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The wetting transition in the presence of a random substrate is studied in two 
dimensions, using a restricted solid-on-solid model. The singular part of the 
quenched free energy and specific heat is calculated exactly by means of the 
replica trick. Disorder introduces logarithmic corrections to the results of 
the pure system. The divergent part of the width of the wetting layer is also 
evaluated: here no corrections to the pure case are obtained. The method 
employed uses a field-theoretic calculation (in terms of Goldstone diagrams) of 
the ground-state energy of an effective many-body Hamiltonian. The validity 
of the replica method is tested numerically. 

KEY WORDS:  Wetting; two-dimensional systems; random systems; inter- 
faces. 

1. I N T R O D U C T I O N  

The study of different aspects of wetting phenomena has generated con- 
siderable research activity lately (see Refs. 1 for recent reviews). One of 
these aspects is the wetting transition. This transition occurs when one of 
the phases of a two- (or many-) component system at coexistence, enclosed 
in a container, forms a macroscopically thick film on the wall (substrate) of 
the container. This film can be formed continuously, in which case the 
transition is second order. A discontinuous jump of the thickness signals a 
first-order transition. 
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If the transition is discontinuous, a first-order transition line extends 
into the region where the system is not at coexistence. This line is called the 
prewetting line. It terminates at a critical point, which belongs to the Ising 
universality class. ~2~ The effect of substrate randomness on this transition 
has been studied within the mean field theory. ~2) The surprising result of 
this study is that the prewetting critical point of the pure system is shifted 
and eventually, if randomness is strong enough, disappears. When it 
disappears, the first-order wetting transition becomes second order. This 
prediction still awaits experimental verification. 

If the wetting transition in the pure system is second order, its nature 
may be changed by bulk randomness, as has been shown recently by exact 
calculations ~3) and general scaling �9 ~4) arguments. On the contrary, in the 
case of substrate randomness, the transition of the pure system is not 
affected, as has been demonstrated by using the Harris criterion (5) and 
mean field calculationsJ 2) The results of Ref. 2 apply to systems with bulk 
dimensionality larger than two. The two-dimensional case is marginal, 
since in the pure system the specific heat exponent e is zero, (6'7/ and the 
Harris criterion is not very useful. However, ~ = 0 corresponds to a finite 
jump in the specific heat (and not to a logarithmic singularity, as in the 
two-dimensional Ising model); therefore, one expects that the effect of 
randomness is rather weak. 

In the present work, we study in detail the effect of substrate random- 
ness in two bulk dimensions (2d). We consider a restricted solid-on-solid 
(RSOS) model. This model describes correctly the universal features of the 
second-order wetting transition in the pure 2d system. To treat quenched 
randomness, we use the replica trick, which results in an effective many- 
body Hamiltonian. To determine the free energy of the random system, we 
calculate the ground-state energy of the many-body Hamiltonian. This is 
done by using the Goldstone time-ordered perturbation theory. (8 a0) The 
perturbative expansion is performed in terms of the cumulants of the dis- 
tribution function characterizing the randomness. The perturbation series 
for the singular part of the free energy can be summed up. In this way we 
obtain an exact expression for the quenched free energy in the critical 
region. As a result, we prove that substrate randomness is indeed 
irrelevant, in the sense that it leads "only" to logarithmic corrections in the 
free energy and specific heat. The perturbative analysis can be carried out 
also for the width of the wetting layer. Here, according to our calculations, 
the results for the pure case are not changed at all. As regards the value of 
the critical wetting temperature, we prove that it is that of the annealed 
system. Our results are exact, and valid for arbitrary randomness. 

The paper is organized as follows�9 In Section 2, we define our model, 
and give its solution in the pure case. Section 3 contains the derivation of 
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the quenched free energy in an easy way, without the machinery of field 
theory. It leads to the correct result, but the justification of some steps of 
the calculation can be given only in later sections. In Section 4, we derive 
the many-body Hamiltonian, whose ground-state energy we calculate, 
using the Goldstone perturbation theory, which is reviewed in Section 5. 
Section 6 contains the exact calculation of the quenched free energy using 
Goldstone diagrams, whereas in Section 7 we calculate the width of the 
wetting layer. In Section 8 we present numerical results, with which we 
intend to prove the validity of the replica trick. Finally, in Section 9 we 
discuss the relation of our model to some other random models, and make 
a few concluding remarks. 

A short version of the present work (restricted to the case of Gaussian 
disorder) has been recently published. (H) 

2. THE MODEL AND THE N O N R A N D O M  (ANNEALED)  CASE 

In this section, we define the model we use to study the quenched 
random wetting problem. Since in the next sections this model is solved 
perturbatively in the strength of randomness, we give here the solution of 
the pure case. This formally corresponds to the annealed case, as will be 
demonstrated. 

We consider a restricted solid-one-solid (RSOS) model, with an 
arbitrary distribution of wall potentials. The partition function of the 
system reads 

~ =  ~ exp - f l J ~  [h~+~-h~l+fl  u~bh,,o (1) 
{hi= 0, l , . . . , L }  i =  1 i =  l 

Here L is the vertical size of the container and N is its horizontal size, the 
wall being horizontal, ui is the random substrate potential at site i along 
the wall. We assume that ui are a set of independent random variables, all 
with the same distribution p(u) du. The term [hi+ 1 - hi] takes only values 0 
and 1. 

The quenched free energy is obtained by averaging In Y' over the dis- 
tribution of ui; in order to evaluate it, we introduce replicas: 

d ~ - ; ;  (2) 
In ~e = dn n=0 

In Eq. (2), the bar stands for the average over disorder. Performing this 
average, we obtain 

Y '"= ~ exp -flJ ~ [hT+~-h~[ +fl ~ ~Sh;o (3) 
{h~} i = l  7 = i  i = l  cr 1 

822/51/1-2-3 
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Here we define the function ~ /by  

exp[fl~#(x)] = f du p(u)e ~ux (4) 

It will be useful to use the series expansion of ~#(x) as 

xZ 
~(x) = ~ c~ k! (5) 

k = 0  

where the Ck are the cumulants of the distribution p, 

Co = 0 

Cx = a  (6) 

c~ =/~(u ~ - ~ )  =/~v 

In the thermodynamic 
reduces to finding the largest eigenvalue A. of the transfer matrix 

~ = 1  ~ r  

= T.({h~}, {h'~})exp[W({h~}, {h'~})] (7) 

where 

limit ( N ~  ~ ) ,  the problem of calculating Lr n 

and 

T,,({h~}, {h'~})=exp(-flJ ~ Ih=-h'~l+H~g, ~ 6h',O) 
~ = 1  ~ = 1  

(8) 

m 

~//1 = ~  (e~u) = Y/(x = 1) (9) 

W in (7) is given by 

~ = t  ~ = 1  ~ = 1  

If the distribution p(u) is chosen to be Gaussian, with mean t~ and variance 
V, the expression in the square brackets of (lO) reduces to 

/~v ~ 6h~,o 6h~,o (11) 
l<~or 
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At the same time, (9) takes the form 

1 ~u~ = ~ + ~ v  (12) 

Quenched averaging then introduces an effective interaction between 
replicas, as is shown by (11). In the case of a general distribution there will 
be "k-body" interactions with k = 2, 3,..., n. 

Then 

N N (13) ~n  = T r  M n N ~ "  A, 

We denote in operator form 

exp W({h~}, {h'~})= (e-V)({h~}, {h;}) 

so that 

We define Eo by 

(14) 

An=(1 +2e  ~a)ne-E~ (16) 

The critical wetting point is obtained when An = (1 +2e-~J) n, which 
demarcates the localized and delocalized phases. In the critical region, 
Eo ---) 0, and Eo can be related to the relevant length scales of the problem. 

We will evaluate Eo by performing a perturbative expansion is powers 
of the cumulants Q ,  and it is therefore necessary to study the spectrum of 
Tn. Here Tn is the transfer matrix of the annealed case, which in turn is 
equivalent to the pure (n = 1) case, since Tn is the nth tensorial power of 
the operator TI. 

The spectrum of T1 is simply obained by solving for the eigenvalue 
equation, which takes the form 

L 

~, [6hh,+t(ah, h+~+c~h,h_i)][l+ah,,o(y--1)](~.(h')=e~r (17) 
h ' = 0  

Here t = e - /~ J ,  y = e ~*~. We will also use the notation 

eh= 1/xfy if h = O  

= 1 if h # 0  

The spectrum of T~ (in the dry phase, i.e., when ( h ) <  c~) consists of one 
localized state Co(h) and a set of L delocalized states ~bq(h). 

Mn= T,e -v  (15) 
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More precisely, it is easy to see from (17) that 

(~  e - ~ - l / 1  ' -1/2 
(9o(h) = eh + ~,--;77---7, ] e ~h 

with eigenvalue 

eo= 1 + 2 t c o s h  # =  y(1 + te -~)  

(18) 

(19) 

/~ ~- [y(1 + t ) -  (1 + 2t )] /y t  

eo --~ (1 + 2t)(1 + 7/~2) 
(21) 

where y = t/(1 + 2t). For future use, note that 

f 2  = ~b2(O) ~_ 21~/y (# --+ 0) (22) 

For  the extended s t a t e s  Oq(h), one gets 

Oq(h) = eh(2/L) 1/2 sin[q(h - L) ]  (23) 

with eigenvalues 
eq = 1 + 2t cos q (24) 

The matching condition at h = 0 

y s i n ( - q L ) +  y t s i n q ( 1 - L ) = ( l + 2 t c o s q ) s i n ( - q L )  (25) 

implies a "quantization" condition on the admissible values of q: 

y t  sin q 
tan qL = (26) 

y(1 + t cos q ) - ( 1  + 2 t  cos q) 

This is an equation of degree 2L + 2 in e iq, which has (L + 1) solutions with 
0~<q<~Tz. 

The critical domain is characterized by long-range correlations, and 
thus only the small-q eigenstates are important. For small q, we have 

ytq  (27) 
tan qL ~ y(1 + t) -- (1 + 2t) - q2(yt/2 - t) 

Close to the critical point,/~--+ 0, and one obtains 

Then (19) defines/.t as a function of t and y. 
The critical wetting occurs for/z = 0, and thus the criticality condition 

reads 
1 + 2t* 

y* - - -  (20) 
l + t *  
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so that 
q2 

sin 2 qL ~- q2 + #2, eq~- (1 +2t)(1--Tq 2) (28) 

For future reference 
2 q2 

f2 = 02(0) _ yL q2 + #2 (29) 

Equation (29) is valid in the critical region, i.e:, for q and # ~ 0. In the 
thermodynamic limit, we will replace sums by integrals, according to 

1 ~ 1 f~dq 
-i Z 7 Jo q 

With the above results, all observables can be evaluated. In the critical 
region, on the dry side of the transition, we obtain 

1 1 1 
<h " - ,  ~ll #2 (30) 

/~ eo -- e~ 

The free energy is given by 

- f i r =  lim (- f lF/N)=ln(1 + 2 0 + 2 #  2 (31) 
N~oo  

On the wet side of the transition, the width (h> of the wetting layer 
remains infinite, and 

- f l f =  lim ( - f lF /N)  = ln(1 + 20 (32) 
N~oo  

Relations (31) and (32) imply a jump in the specific heat. (6'7) 
In the critical region, it is easily seen that one can write 

T I = ( I  + 2 t ) e  m (33) 

where the operator H o is given by 

Ho=-7#2[ffo>(q~ol + ~ Tq2l~bq><~ql 
q>O 

(34) 

3. C R I T I C A L  B E H A V I O R  OF T H E  Q U E N C H E D  
R A N D O M  S Y S T E M .  T H E  EASY W A Y  

In this section we present a simple perturbative derivation of the 
critical behavior of the quenched random system. It is only meant for 
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pedogogical purposes, and the justification of essential steps will be given 
later. In this section, we restrict the discussion to Gaussian randomness. 

To investigate the critical behavior of the quenched random system, 
we need the largest eigenvalue An of the transfer matrix Mn, given by (7) 
and (15). 

We perform a perturbative expansion of An in powers of V around the 
ground state of the annealed system. We write 

Mn = T,, - T,, V+ ... (35) 

A standard perturbation theory gives 

A n = e g ( 0 1 1 -  V+ V G V -  VGVGV+ ... 10) 

where 

(36) 

1 
G -  (1-10><01) (37) 

egT~ 1 -  1 

contains a projector, indicating that all the intermediate n-particle states 
are excited states. Here 10 ) denotes the noninteracting ground state of then 
n-particle system, which is a direct product of the I~bo> states used in (34). 
The first nontrivial term in (36) is 

<01VGVIO> = in D -  1)(flZv)2 f4 I (38) 

where 

2 2 

I= Y" fqlfq2 (39) 
qlq2 e2/(eq, eq2 )- '  

For small/~ and q, using the results of the preceding section, one obtains 

4 ( l + 2 t ) ( ~ d q l  ~dq2 q~ q2 1 
I-~ yTt Jo--~--Jo -~ #2+q21~Z+q22I~2+q~+q~ 

2(1 +2 t ) l  n 1 (40) 
"" t y Z x  

It can be shown (see below) that, at any order in the perturbation expan- 
sion, the most divergent terms are those where, in the intermediate states, 
only two particles (replicas) are excited. Due to the factorized nature of the 
interaction V [see Eqs. (11) and (14)], the integrals separate, and to 
leading order one obtains 
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1 2 A,,=e~ l + ~ f i  Vn(n-1)f4[1 

1 fl2Vn(n- 1)f4~ 
= e~ 1 -t ~ ~-_--~-~-V---~ j 

+ ~ v I +  ( ~ v I )  ~ + l} 
(41) 

Using (2), (13), (40), and (41), for the quenched free energy 
limit, we get 

m the small-~ 

- f l f  =ln(a + 2t)+#27 I +O(V3)+ Iln(Tw_ T)I ~-0 

(42) 

Here Tw is the critical wetting temperature and # ~ (Tw-  T). Compar- 
ing with (31) for the annealed case, it follows that the jump in the specific 
heat has a 1/log correction. Note that the critical temperature of the 
quenched system is the same as that of the annealed system. (The reason 
for this will be discussed later in more detail.) 

It is the purpose of the next sections to prove more rigorously that the 
result (42) gives the correct critical behavior for arbitrary disorder. 

4. S E C O N D - Q U A N T I Z E D  R E P R E S E N T A T I O N  FOR T H E  
Q U E N C H E D  D I S O R D E R E D  S Y S T E M  

In what follows, we construct a second-quantized representation for 
Mn, which will prove to be very convenient for performing the calculation 
of A, in terms of Goldstone diagrams. 

Since we expect (from the Harris criterion) that disorder is marginally 
irrelevant in our system, it is reasonable to assume that both ( H o )  and 
( V )  will go to zero with E 0. (This assumption will indeed be checked at 
the end of our calculations.) With this proviso, it is easy to see, using the 
Baker-Campbell Hausdorff formula, that 

M , = ( l  + 2t)'e m~e-V=(l + 2t)'e-(H~176 w) (43) 

with W= - V +  O(EZo). Thus, in the critical region (Eo ~ 0), diagonalizing 
M,  just amounts to diagonalizing the operator H = H 0 , -  W. All operators 
now act in the space of n particles. Since T, is a tensor product of Tt 
operators, Ho, is readily seen to be a sum of one-body operators Ho, given 
by (34), whereas from (10), W is a many-body operator. For arbitrary 
disorder 

W=//2 ~ C2~h~,o5~.o + 3-body + ... (44) 
l ~ < f l ~ n  
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We now proceed to represent H in a second-quantized form. The n par- 
ticles are to be considered as distinguishable, since they are not constrained 
to any symmetrization condition a priori. However, since the Hamiltonian 
H is totally symmetric, so is its ground state. We thus introduce bosonic 
creation and annihilation operators 0 f  and 0x, where 2 denotes the label 
of the single-particle eigenstates of H0. 

In the bosonic Fock space, Eq. (34) becomes 

Ho = -7~20~  Oo + 2 7q20+Oq (45) 
q>0 

and similarly, the interaction W can be written as 

1 
-]-3-'~'~]1)-~2";+ ~- 23 (~'1/t2~31 W3[Y1V2V3) Ofl 0)-+20)'+OvlOv2Ov3 

Vl v2 v3 

+ 4 - b o d y +  .. .  + m a n y - b o d y +  .-- (46) 

with, for instance, 

(2vl W2]vp ) = ~2C2 ~ 6h,,h36h2,h4fi+,,O6h2,0 
hlh2h3h4 

x 4,.~(h,) ~,,(h~) ~(h+) ,L~(h4) 

= f l2C2 fx fn f~ f ,  

()+1)~2)+31 W31 v, v2 v3 ) = f l3C3f  ~olf ~.2f ~+3f~lf ~2fv3 

(47) 

(48) 

In order to calculate the ground-state energy of H, we perform a per- 
turbation expansion in powers of W. It is well known that perturbation 
expansion for a system with a f i xed  number o f  bosons is cumbersome to 
perform. This is due to the fact that there is no Wick theory for canonical 
systems of bosons, even at zero temperature. Such a Wick theorem, 
however, exists for the ground state of a fixed number of fermions, and we 
shall thus transform our bosonic problem into an equivalent fermionic 
problem, using the so called "high spin trick. ''~12) 

Since the unperturbed bosonic ground state is a codensate with all the 
n bosons in the state ]~bo), the idea is to replace the n bosons by a set of n 
fermions, which carry the same quantum numbers as the bosons, plus an 
additional color degree of freedom (i.e., high spin), denoted by or. This 
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color index ranges from 1 to n. Let us then consider the fermionic 
Hamiltonian 

o-=1 q 

0̀ 10"2 

1 
-~- 3-'~T E 2 E ~ ~1 ;~2')~31 W31]/1 ]/2[/3 ) 

0"10"2o,3 21).2J. 3 ktl/~2/,t3 
+ + 

x 0)+1 x 1 ffJ).2~20).3~3 ffJJA3cr30//2~2ffJ/tlGl 

+ many-body (49) 

Here 02~ and 0;~ are creation and annihilation operators for a fermion 
in state Iq~.) with color ~. 

The unperturbed ground state of H F (with eigenvalue neo) is given by 

I~o) = I~I 0 ; 1 0 )  (50) 
cr=l 

which factorizes into a spatially symmetric wave function (all particles in 
states ]~b o)) and an antisymmetric wave function in the color index. The 
Hamiltonian H v is diagonal in color space by construction. It cannot 
therefore change the color wave function of any state. 

The true ground state I~o0) of Hv can be obtained by using 

r-rnFlqSo) ~- e-rn~~ (51) 
T~oo 

Since e rHF does not change the color wave function of I~bo), e rn~lq~ o) 
is also spatially symmetric and color antisymmetric. We obtain in this way 
that the spatial part of e - r ,F  [~0) is identical to the bosonic ground-state 
wave function. 

We are thus led to calculate the ground-state energy of H v by perfor- 
ming a perturbation expansion in powers of W from the unperturbed 
ground state J q5 o). 

This perturbation expansion can be done by means of Feynman or 
Goldstone diagrams. It turns out that the latter are more appropriate for 
the present problem; therefore, in the next section we review the Goldstone 
expansion and diagrams. 
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5. GOLDSTONE D I A G R A M S  

We review the Goldstone perturbation expansion (s 10) for the ground- 
state energy of a system of n fermions. The Hamiltonian is 

H v  = H  on +H1 (52) 

Ho~ is a sum of operators given by (45), where now the operators carry an 
extra index a [see (49)]. H1 can be identified from (49). The explicit 
expression for the matrix elements in (49) is given by (47) and (48). The 
unperturbed ground state is given by (50): 

Ho. 160o ) = neo 160o ) (53) 

[For small/a, e o  = --3)# 2, as can be seen from (33) and (34).] 
For the exact ground state of H v ,  we write 

HF I~Po> = Eol~Oo> (54) 

Standard perturbation theory gives 

Eo = neo + < 60ot H11Cibo > + < 60o1 H, GH 1 t~o > + < ~ol H~ GH, GH1160o > 

- <~ol H ,  16005 x <60ol H1G2H1 16005 -4- - "  (55) 

Here 

= P/(neo -- Ho , )  

is then Green's function [compare with (37)] and 

P =  1 -160o>(60ol 

is a projector outside the Fermi sea. It is simple to give a graphical inter- 
pretation to Eq. (55). Each term is read from right to left. A typical term 
P H  1 acting on 160o> leads to a new Slater determinant. For example, 

P~b ++ ~, 0 ~,+o2 0too2 ~b,1 o~ 160o ) 

Here two particles of 160o) in states/~xo I and ~20"2 have been replaced by 
two particles in states 21al and 22a2. Since 160o> is a Fermi sea, the states 
/~101 and #2a2 must be hole states, i.e., belong to the Fermi sea, whereas 
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the states 210-1 and 220" 2 must be particle states, i.e., above the Fermi sea. 
The new state is an eigenstate of Ho, with energy 

(~q= +Tq 2 for small q). Thus, multiplying this state by (neo-Hon)  1 
merely multiplies it by an energy denominator 

1 

~2particles gparticles - -  ~2holes gholes 

Applying again PH1 to this states transforms in into a new Slater 
determinant, with new particles and holes and appropriate energy. Finally, 
applying (~o lH1  to this state must remove all particle-hole excitations 
from the intermediate state, so as to project it back to I qSo). 

It is convenient to represent hole states by downgoing lines and par- 
ticle states by upgoing lines. Each operator H I is represented by a vertex. 
For example the term proportional to (2r/] W2lvp) in (49) can be 
represented by the diagram of Fig. la. A three-body operator corresponds 
to the diagram of Fig. lb. It can be shown (91 that the perturbation expan- 
sion (55) is obtained graphically by drawing any number of vertices (of any 
type), and connecting them in all possible ways. Between any number of 
consecutive vertices, there is an energy determinator, equal to the sum of 
energies of the holes. There are combinatorial factors and signs, which we 
do not details, (8 10) and the final expression is to be summed over all 
quantum numbers present in the graph. 

A priori, such graphs can be disconnected. For example, the last term 
in (55) is obviously a disconnected diagram. However, Goldstone proved (8) 
that all disconnected diagrams cancel, and thus the ground-state energy of 
the system is the sum of all connected diagrams. 

We give now more precisely the rules for calculating these Goldstone 
diagrams. 

t t 1 t t 
(a) (b} 

Fig. 1. Graphical representation of (a) a two-particle interaction and (b) a three-particle 
interaction in (46). 



42 Forgacs et  al. 

1. An upward-directed line represents a particle state (state above the 
Fermi sea) (q, a). A downgoing line corresponds to a hole state (state in 
the Fermi sea (0, ~). 

2. A matrix element (2122.-.2pl Wpl#l . . . t xp)  is represented by a 
horizontal wavy line, with p outgoing lines carrying indices 2122... J.p, and 
p incoming lines with indices/x~#2.../Xp. 

3. Between two vertices there is an energy denominator, which equals 
the sum of the particle energies minus the sum of the hole energies. 

4. The sign of the diagram is given by ( - - l )  N~+N<+V 1, where N h, 
No, and V stand, respectively, for the numbers of hole lines, fermion loops, 
and vertices. 

5. Summation over the momenta q and color indices a has to be 
performed. 

Since color is conserved at each vertex, summation over it is trivial, 
and simply multiplies the contribution of the diagram by n u<. With those 
rules the contribution of the graph of Fig. 2 is 

f: dq, p. dq2 f2q, f~, (56) -- ( f lZc2 )Z t12 f4L2  --~ Jo 7 7(21X 2 + q2 + q~) 

Since we are interested in evaluating (OEo/~?n)ln=o, we see that we have to 
retain only those diagrams that are proportional to n, i.e., graphs with only 
one fermion loop. 

Figure 3 shows some of these diagrams. 
To conclude this section, let us note that, due to the separable nature 

of the interactions, each line carries a factor f ] ,  provided we associate a 
factor f lPCp/p[ to  a p-body vertex. 

( 
Fig. 2. Graphical representation of the analytical expression given by (56). 
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Fig. 3. Some Goldstone diagrams contributing to the ground-state energy. 

6. G R O U N D - S T A T E  E N E R G Y  

Let us consider a generic diagram, with one fermion loop, contributing 
to the ground-state energy. 

Such a diagram has Np particles lines, Nh hole lines, and Vm vertices of 
m-body interactions, m i> 2. The contribution of such a diagram to the 
ground-state energy has the form 

~0- ~ ~ ~ ~ ~ j ~-~ ~ + ~  ~ f0 ~ ~ ~ - ~'~ ~o~ ~ 

N. V~I 1 

X IF] f2q, [ !  Z 'gparticles -- Z /;holes 
(57) 

i=1 j= 

Here V= '~m )2 ~/'m is the total number of vertices. A denotes some finite 
ultraviolet (UV) cutoff. The last product in (57), lqVu11, contains the 
energy denominators between the j th  and ( j +  1)th vertices. [Remember 
that (57) contains only one fermion loop.] 

Since q may go to 0, we see that when #--+0, (57) may become 
infrared (IR)-divergent. In fact, these IR divergences signal the onset of the 
wetting transition, and the critical behavior will be governed by the most 
IR divergent graphs. As is usual in the study of phase transitions (see, e.g., 
Ref. 13), it is useful to transform these IR divergences into UV divergences 
by a simple changes of scale in the momenta, and analyze the UV behavior 
of the integrals. 

We thus make a change of variables in (57), 

qi = llXi 
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and, using (22) and (29), we obtain, up to constant factors, 

x,, l 
"JO i= ' T~ i :  l X2~l--~ j= V Z k  X2 "~- ~ Z k  1 

It is now simple to analyze the divergence of the perturbation 
expansion. We shall use the cutoff A as a momentum scale. Then, simple 
dimensional analysis shows that 

[gm] = [flmCm] = 2 - - m  

where the brackets indicate dimension, in units of A (inverse length). 
Only those vertices with positive or vanishing dimension are relevant 

at criticality, i.e., can lead to divergences. We thus reach the important 
result that only two-body vertices may affect the critical behavior, all 
higher order interactions being irrelevant. Consequently, the critical 
behavior of the 2d (substrate) disordered wetting problem is universal: it 
depends on the distribution of the surface fields only through its first two 
cumulants. 

Thus, we may reduce the Hamiltonian to 

g2 
H = H o . +  T Y, U).IU.~2LlL2@~+I~I@)+2a2@#2~2@#,~I 

2t 22,u] #2 

The contribution of a graph becomes 

~2 / A "~ 
6Eo~ (g2) V yN~+Np I~-f i)  

Here we used the topological relation 

4 V = 2N h + 2Np 

(59) 

V now denotes the total number of two-body vertices. I(A/lO is the integral 
in (58). 

The marginality of the coupling g2 guarantees that I(A/lt) is at most 
logarithmically divergent, and indeed the degree of divergence of I(A/#) is 
given by 

6 ( I ) = N p - 2 ( V - 1 ) = 2 - N h  (60) 

Thus, all diagrams with three or more hole lines are UV-convergent, 
and cannot affect the critical behavior, whereas diagrams with two hole 
lines may. 
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We thus conclude that the singular part of the free energy is the sum 
of all diagrams with two hole lines, i.e., the sum of all ladder diagrams 
shown in Fig. 4. (A line connecting two ends of the same vertex is a hole 
line.) 

Because of the factorized nature of the two-body interaction, each 
ladder diagram can be factorized, and the sum in Fig. 4 is a geometric 
series. This finally leads to 

•n = 7/~2 - g2#2 1 - g2I 

Here I is the basic "building block" of the series, given by (40). 
Consequently, the free energy, close to the critical point (/~ = 0), is given by 

-flf= ln(1 + 2 t )+  ,---7--.--.--.--.-~. (62) 

S 2 in the above expression is the sum of all convergent graphs with two- 
body interactions. The 0(#  3 ) is the contribution of the three-body, etc., 
vertices, and is indeed irrelevant for small #, as can be seen from (58). [A 
three-body vertex contains at least three hole lines, in which case the 
corresponding integral in (58) is UV-convergent according to (60).] The 
result (62) for the free energy implies that the behavior in the specific heat 
at the transition is 

2~ 

where ACo is the jump in the absence of disorder. It is interesting to point 
out that, whereas $2 contains g2 (which in turn depends on ~2), the 
singular part of the free energy and of the specific heat is completely 
independent of the strength of disorder. 

One remark concerning the above results is necessary. It has been 
assumed that the critical point of the quenched disordered system is the 

4- . . . .  

Fig. 4. The infinite series of ladder diagrams for the ground-state energy close to the 
transition. 
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same as that of the annealed system, namely criticality is given by p = 0. 
This is correct if the squared "mass" #2 in the bare Hamiltonian (45) is not 
renormalized by the interactions. More precisely, for the above results to 
hold, one needs #R(P = 0 ) =  0, where #R is the renormalized mass. It will be 
proved in the next section that indeed PR(P = O)= O. 

7. W I D T H  OF THE WETTING LAYER 

The width w of the wetting layer is obtained by calculating the average 
of the height variable ha for any c~ (and then letting n ~ 0). Choosing c~ = 1, 
in the second-quantized formalism, we obtain 

(gOo [/~11gOo> (63) w =  - ~  <L ~r = 11/,I/,, ~r= 1> (~~176 g'~+ LP" I~#~ 

We are then led to calculate the average of a one-particle operator ~ -  0~. 
The perturbation theory for such an average can be worked out quite 
similarly to that presented for the ground-state energy. Standard pertur- 
bation theory for a one-particle operator K leads to 

( K )  = <gol K l g o ) -  (gol Klgo><gol  H1G2HI Igo)  

+ <go] KGH1 [go> + <go] HI GKlgo> 

+ <go[ KGH~GH, [go)  + <go[ H~GH~GK[go> 

+ <gol HmGKGH1 Igo> 

-- (g0] Hi ]go> [<go] KG2H~/go) + < ~0] H1G2K]go>] (64) 

[Note that the above reduces to (55) if K =  Ho + HI . ]  
The series (64) can again be represented graphically. Some typical 

graphs are shown in Fig. 5. Here K is represented by the dotted line with a 
cross at the end. It can be proved (1~ that only connected diagrams give a 
contribution to (64). It is clear that all diagrams in (64) can be generated 
from those for the ground-state energy by putting an insertion of K on any 
of the particle or hole lines. In view of the results of the preceding section, 
it is now easy to prove that none of these decorated diagrams gives a 
singular contribution, in the/~ --, 0 limit. Since only diagrams with two hole 
lines gave a singularity in Eo, it is sufficient to decorate those diagrams. 
Consider the first diagram of Fig. 5. Here a particle line has been 
decorated. Using the rules to evaluate the Goldstone diagrams given in 
Section 5, the contribution of this diagram is found to be proportional to 

A A ~ f2 f2 f2 fO fO JO Jql"q2Jq322ff2) fg dql dq2 dq3 (kt2 + q2 + q2)(l~2 + ql q3 
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. . . . .  X 

Fig. 5. Some diagrams contributing to the average width of the wetting layer. 

For small /~ the above expression is proportional to /~; it vanishes in 
the #--* 0 limit. Now consider the second diagram in Fig. 5. Here a hole 
line has been decorated. The expression of this diagram is proportional to 

2 2 

f 6  dql dq2 (/~2 + q~ + q2)2 

For small/~, the above expression is again proportional to #. In this 
way we obtain that, if ( 4o1KI4o )  is singular, the interactions (disorder) 
do not change this singularity. Applying the above results to (63), we have 
to evaluate (40l ~;+ ~ 14o). This is nonzero only if 2 =# ,  and the state 
belongs to the Fermi sea. 

This means that the singularity of w is given by the singularity of the 
matrix element of/~ in the ground state of the one-particle system, and so it 
is exactly the same as in the noninteracting case. We can now easily 
calculate the renormalized mass /~R. For this, we need the expectation 
value of ~ 0 ~ .  This is just a special case of a one-particle operator and 
therefore we immediately obtain 

It R = 1~ + O(l~ 2) 

which proves that the critical points of the quenched and annealed systems 
are indeed the same. 
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8. N U M E R I C A L  RESULTS 

The results for the quenched disordered wetting problem obtained in 
the previous sections could be invalid if the use of the replica trick were not 
allowed. To test the validity of our results, we present here some numerical 
results obtained for the RSOS model defined by (1). 

We focus our attention on the critical behavior of the free energy per 
site f and the mean interface height w, and use the natural transfer-matrix 
formalism introduced in Section 2. This method has proven to be more 
powerful and efficient than the exact enumeration scheme discussed in our 
previous publication, (1) which was merely used to determine the critical 
temperature of the model. 

Starting with an arbitrary initial state vector s o given, e.g., by 
(s h = cSh, o, we obtain a sequence of vectors s N by acting on s with the 
ordered product of N transfer operators Tn: 

ff2N= Tn (2 o (65) 
1 

where 

(T,)h,h,=ah, h,+t(6h, h,+l+fh, h,_~) (h~>l) 

= y,(go, h, + t6l,h,) (h = 0) 
(66) 

with t = exp(- /~)  and Yn = exp(/~un), the substrate potentials un having the 
common distribution p(u)du. 

The critical temperature /3~ 1 of the model has been shown to be that 
of an effective annealed model. It is the solution of 

1 + 2to 
f exp(flcu) p(u) du - (67) 

l + t ~  

with t c = exp(- /?c)  (we choose in this section J =  1). 
We will present numerical results for two classes of substrate potential 

distributions, namely the uniform one: 

p(u)=l/ul ( 0 < u < u l )  (68a) 

and the exponential (Poissonnian) one: 

p(u) = (l/u2) exp( -u /u2)  (68b) 
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Equation (67) allows us then to relate the parameters u~, u2 to /?c as 
follows: 

exp(~cu~)-  1 1 +2tc  

~cul 1 + t,. 
(69a) 

tc (69b) 
/?cu2 = 1 + 2t c 

The free energy f(/~) of the model is simply given by the leading 
Liapunov exponent of the random sequence ~e~ N 

-/3f(/3)= lira (N l lnlbK2NII1) (70a) 
N ~ o v  

with 

Hf2nlll = ~ ((2N) h (70b) 
h = O  

Let us now discuss the critical behavior of this quantity. When the 
interface is delocalized (/~ </~c), we have f(/?) =f,(/~) = _/ / -1  ln(1 + 2t), 
independently of the potential distribution. For / / > / ~  (pinned interface), 
we define the free energy amplitude 

R(fl - fl,.) = - f l ( f  - f~)/(fl-- fl~)2 (71) 

This ratio goes to R(0) = AC/(2~)  as/~ -o/~c, where AC is the specific heat 
jump, which is finite, both in the pure and the random system. It has been 
shown in Sections 2 and 6 that the way R approaches R(0) is different in 
the two models: 

pure case: R = R(0) + O( f l -  ~c) (72a) 

( 27zSs ) 
random case: R = R(0) 1 + Iln(/~-/~c)l I- -.- (72b) 

where Sz is a model-dependent constant, which goes to unity in the weak- 
disorder limit. It also turns out that the logarithmic correction of Eq. (72b) 
is only observable in a very small critical region, which can be estimated 
from the results of Section 6: 

where 

/3 -/~c < A = exp[ - 2~/(2vc)] (73a) 

2 = 4(1 + tc)2/[tc(1 + 2tc)] (73b) 
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and 

,~. = /~c ( ,~r  ~)~ ~,~ (73c) 

For exponential distributions (68b), A = exp{ - • [1  + (2tc) -1] } is always 
less than its tic-*0 limit A 0 = e x p ( - 3 ~ / 2 ) = 9 x l 0  -3. For uniform dis- 
tributions (68a), this upper bound reads A 0 = 1 x 10 11. 

Figure 6 shows plots of the free energy amplitude R ( f l  - t ic)  defined in 
Eq. (71). Our numerical data have been obtained as follows. We have 
replaced the transfer operators Tn by finite-dimensional matrices 
(0 ~< h ~< hmax) , computed the O N recursively, extracted the free energy from 
Eq. (70), and averaged the results over a large number of values of N lying 
between N m a x / 2  and Nma x. In order to have data with reasonable error 
bars, i.e., comparable to the symbol size on Fig. 6, a very large number of 
iterations was needed (Nma x going from 106 tO 107, a s  fl--fie ranges from 
0.2 to 0.02). We shall comment on the influence of the matrix truncation 
size hmax later, when we present data for the mean height w. Our data for 
the uniform and exponential substrate potential distributions are presented 
on the same Fig. 6, together with the exact result (solid line) corresponding 
to the annealed model having the same tic. The parameters ul, u2 of the 
distributions have been chosen in such a way that t c = e x p ( - f l c ) = 0 . 6  in 
both cases. The lines going through both series of points are just least- 

1.5 

1.0 

R 
I I [ [ 

/x ~ z~ ~ A ~ ~ , ,  ,,, 

05 AI3 
I I I I 

0 0.05 0.10 0.15 0.20 

Fig. 6. Plot of the amplitude R of the free energy difference between the localized and exten- 
ded phases, defined in Eq. (71), versus ,J fl -= /3 - ,8 c, showing numerical data for ( A )  the 
exponential and ( O )  uniform substrate potential distributions. The thick line represents the 
exact result for the effective annealed model having the same critical temperature (t C = 0.6) as 
both random systems. The thin lines (least-squares fits) are guides to the eye. 
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squares linear fits, mainly thought of as guides for the eye. Just as could be 
expected from our estimate (73) of the size of the critical region, the 
logarithmic corrections (72b) to the specific heat jump are invisible at the 
values of /? - /~c  that can be reached by our numerical scheme. 

We now turn to the mean interface height defined through 

w= lim (N -1 ~ fls (74) 
N ~ 0  n = l  

where the norm of f~, reads as in Eq. (70b). This quantity is averaged with 
respect to both the thermal fluctuations of the interface and the substrate 
potential distribution. It has been shown in Section 7 that the mean height 
diverges, as the critical temperature is reached from below, just as in the 
pure model 

w ~  A ( f l -  flc) 1 (75) 

where A is a model-dependent constant. No logarithmic correction is 
expected to modify this simple power-law critical behavior. 

Figure 7 shows plots of the amplitude 

P ( / ~ - L )  = ( /~ - /L)w (76) 

This product hence approaches a finite value P(0) -- A as/3 goes to/~c. The 
numerical values of P have been extracted from the very same long sequen- 
ces of state vector ~r that were used to determine the free energy. The data 

0.7 

0.6 

0.5 

0.4 

P 

I I I 

0 0.05 0.10 0.15 0.20 

Fig. 7. Same as Fig. 6, for the amplitude P of the mean interface height w, defined in 
Eq. (76). 
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are reliable as long as the truncation size hmax is much larger than the mean 
height w. It has been sufficient to take hmax = 500 for /3- /~c />  0.02 in the 
case under consideration. The data corresponding to the uniform and 
exponential potential distributions are again presented on the same Fig. 7, 
together with the exact annealed result, and the thin lines still represent 
least-squares fits. 

These numerical results show that two essential physical quantities of 
the critical wetting of a disordered substrate in two dimensions, namely the 
free energy and the mean interface height, are numerically very close to 
their values in the equivalent annealed model introduced in Section 2, and 
hence are not very sensible to substrate randomness, except in a very small 
critical region, where disorder generates logarithmic deviations to the 
power laws of the pure system. 

9. G E N E R A L I Z A T I O N  A N D  C O N C L U S I O N S  

Let us now discuss some aspects of the low-temperature limit of the 
model. 

For  temperatures going to zero, entropy effects can be neglected, and 
the interface will in principle be straight. If the wall potential is purely 
attractive, the interface will be at the wall (hi = 0) at T =  0. Excitations will 
have Boltzmann factors e -2~s, indicating that one step away from the wall 
and one step back to it have to be made. 

If the wall potential has repelling parts, the problem becomes more 
interesting. Then the interface may avoid regions with large repulsion by 
going one step away from the wall ( h i = l  for io<<.i<~ii). Whenever the 
energy cost 2J  for making two steps is less than the repulsive energy 
(-)52111- i0 ui, the interface will make such a wandering. 

The picture of only considering states with hi = 0 or hi = 1 is just that 
of an Ising chain in a random magnetic field. Writing h i=  1(1-s ; ) ,  with 
s /=  +_1, the corresponding spin Hamiltonian is 

i 1N 1Nj-~iN 
1 - 2 , 1  1 H = - ~ J  SIS,+, 2 uiSi+-~ 2 ui (77) 

i = 1  " =  = 

This problem is known to have an interesting low-temperature behavior if 
frustration is present, that is, if both attracting (u i > 0) and repelling ui < 0) 
wall potentials or random magnetic fields occur. Here we summarize some 
of the known results. 

One can define probabilities Pn(h) that the interface takes the value h 
after n steps in terms of the transfer matrices Ti, 

Pn(h)=(TnT,_l "-" T1)h, o (Tn- ' -  T1)h, o (78) 
h 0 
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with 

(Tk)h,h' = exp( - ~ J I h  - h'l + ]3u~cSh, o) (79) 

and from this the local wall potential vn by 

e ~v. = pn(1)/Pn(0) (80) 

In the pure case, one has v n = T/x, with # defined by Eq. (19). At T = 0  this 
reduces to v = u + J, indicating the cost of kink and attraction energy. 

At the phase transition (# = 0), there is essentially no attraction by the 
wall, and indeed the interface wanders infinitely far away. 

If the wall potentials un have a random distribution, so do the v,. The 
binary case un= _+u was studied by several authors. Bruinsma and 
Aeppli (14) showed that, in the n ~ 0o limit, the local wall potential vn may 
take values on a Cantor  set, its distribution function being a complete 
devil's staircase. Derrida et aL ~15) calculated the ground-state energy and 
entropy. These quentities are discontinuous whenever the condition 2J  = nu 
is satisfied for some integer n. This can be understood as follows. Suppose 
that one has a region in the system with ui = - u  for i o + 1 ~< i ~< io + n and 
that the outer parts i ~< io and i >~ i o + n + 1 favor the situation where hi0 = 
h~0+~+l =0 .  Then the state with h~=0 for io+ 1 <<.i<<.io+n has an energy 
contribution equal to +nu,  whereas the state with h~= 1 for io+ 1 ~< 
i ~< io + n has an energy contribution equal to 2J. When 2J  = nu, both states 
are degenerate. This effect gives rise to discontinuities in several physical 
quantities. 

Another interesting case is the large coupling limit (J>> 1). We have 
already mentioned the mechanism of going one step away from the wall, in 
order to escape from regions with large repulsion. Derrida and Hilhorst ~16~ 
have shown that the leading behavior of the free energy in the J ~ oo limit 
reads 

- f l f  = ~ + Ae-2~*J + Ce-2~J (81) 

where the exponent ~* is the absolute value of the nonzero, real solution 

p(u)  d u e - ~ " =  1 (82) 

Indeed, if all the u's are positxve (only attraction), such a solution does not 
exist. If  there is also repulsion, ~* does exist, and for /~> ~* the second 
term in (81) is the leading correction. 

Exact solutions of the random field Ising chain at all temperatures 
were discussed by Nieuwenhuizen and Luck. (17) These authors consider 
diluted symmetric and diluted asymmetric exponential distributions. In the 
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first case, there is always a positive ground-state entropy; in the second 
case, this is so only for resonance conditions, as in the binary case 
discussed above. The specific heat was found to be linear in T for small T. 
Numerical factors, such as the T = 0  energy, entropy, the specific eat 
amplitude, and the amplitude A of the strong coupling behavior (81), could 
be expressed in terms of coefficients related to the (complex) solutions of 
Eq. (82). 

Another quantity of interest is the two-spin correlation function of 
such Ising-like systems. Grinstein and Mukamel (18) have considered a 
system with strong pinning (ui=O or u i>  + 2 J  or u i<  -2 J ) .  Then the 
interface is pinned at hi = 0 if ui > + 2 J  and at hi = 1 if ui < - 2 J ,  whereas it 
may be at hi = 0 or hi = 1 at sites where ui = 0. It was found that the two- 
point function has a Lorentzian + Lorentzian-squared shape. 

Finally, let us discuss the symmetric model, where the interface can be 
pinned on a line in the bulk. The Hamiltonian of the RSOS model for this 
system is still given by (1), but now the height variables hi take all positive 
and negative integer values. It is easy to show that the interface in this 
model will always be pinned at T =  0, as soon as some attraction is present 
(ui>0) .  For  large temperatures, on the other hand, the interface will 
wander away if the potential is repelling on the average (t7 < 0), as we now 
show. In contrast to the model with a wall; there is no loss of entropy in 
the present case, so that only the energy need be considered. In particular, 
if the potential is attractive on the average, the interface will be pinned at 
all finite temperatures. 

The symmetric model has a transfer matrix 

T~(h,h')=6h~,+t6h, h,+l +t6h, h,_t ( h r  

= y~(60,h, + tC~,h, + t6_l,h, ) (h=O) (83) 

By the transformation 

Shh' = (1/ , , f2)(--fhh '+ 6h, h') 

= + 6h, h,) 
= ( 1 / , , / L  

(h < O) 

(h > 0) 

(h =o) 

(84) 

it can be mapped onto 

0 
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with 

,~h'=g)h,h'+t(fh.h'+l+fh, h ' 1) (h < --2) 

=6h, h'+tbh, h' 1 ( h = - - l )  

= 0  (h,h'>>.O) 

Tn+,hh,~Oh, h,~-t(Oh, h,+l ~-6h, h,_l) (h~>l) 

=y~(6h, h'+2t6h, h' ~) ( h = 0 )  

= 0  (h ,h '~O)  

(85) 

Since the upper matrix T decouples, it can be omitted from the 
calculations of the free energy. The only change with resect to the situation 
with a wall is that the (0, 1) element of ]'n+ has an additional factor of 2. 

In the ordered situation, y .  = y, T n has a localized state ~(h) ~ e F,l~l, 
and T,,+ a related state e -"h (h~>0), with # defined by [-compare with 
(19)] 

y(1 + 2te -~) = 1 + 2t cosh # (86) 

Indeed, the critical point (# = 0) is at the value y - e p" = 1, where the 
potential u changes from atracting to repelling. According to the results of 
the preceding sections, in random systems, the critical point is given by 

f p(u)e~cUdu= 1 (87) 

This equation has a solution with a finite Tc whenever both attracting and 
repelling values of u occur, but on the average the line is repelling (~ < 0). 

In conclusion, we have shown that wetting of a disordered substrate in 
2d is very similar to that of a pure system. Disorder along a line (substrate) 
is not sufficient to change the universal properties of the wetting transition. 
Its effect shows up as logarithmic corrections to the free energy and specific 
heat. If the disorder is along a line in the bulk, (symmetric model), then 
there is no depinning transition in the pure case if u, the pinning potential, 
is attractive. On the other hand, in the presence of disorder, with ~ < 0, a 
depinning transition at finite temperature does take place. 

The above results are exact; they have been obtained by an infinite 
resummation of a field-theoretic perturbation series in terms of Goldstone 
diagrams. The only questionable point, namely the validity of the replica 
trick, has been verified numerically. 

Although the actual calculations have been performed for an RSOS 
model, the same conclusions hold for Abraham's Ising model version of 2d 
wetting. (6) 
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